Loading...

Data Source Matters in Fraud Detection

by Guest Contributor 2 min read June 3, 2011

By: Kennis Wong 

Data is the very core of fraud detection. We are constantly seeking new and mining existing data sources that give us more insights into consumers’ fraud and identity theft risk. Here is a way to categorize the various data sources.

Account level – When organizations detect fraud, naturally they leverage the data in-house. This type of data is usually from the individual account activities such as transactions, payments, locations or types of purchases, etc. For example, if there’s a purchase $5000 at a dry cleaner, the transaction itself is suspicious enough to raise a red flag.

Customer level – Most of the times we want to see a bigger picture than only at the account level. If the customer also has other accounts with the organization, we want to see the status of those accounts as well. It’s not only important from a fraud detection perspective, but it’s also important from a customer relationship management perspective.

Consumer level – As Experian Decision Analytics’ clients can attest, sometimes it’s not sufficient to look only at the data within an organization but also to look at all the financial relationships of the consumer. For example, in the situation of bust out fraud or first-party fraud, if you only look at the individual account, it wouldn’t be clear whether a consumer has truly committed the fraud. But when you look at the behavior of all the financial relationships, then the picture becomes clear.

Identity level – Fraud detection can go into the identity level. What I mean is that we can tie a consumer’s individual identity elements with those of other consumers to discover hidden inconsistencies and relationships. For example, we can observe the use of the same SSN across different applications and see if the phones or addresses are the same. In the account management environment, when detecting existing account fraud or account takeover, this level of linkage is very useful as more data becomes available after the account is open.

Related Posts

For many banks, first-party fraud has become a silent drain on profitability. On paper, it often looks like classic credit risk: an account books, goes delinquent, and ultimately charges off. But a growing share of those early charge-offs is driven by something else entirely: customers who never intended to pay you back. That distinction matters. When first-party fraud is misclassified as credit risk, banks risk overstating credit loss, understating fraud exposure, and missing opportunities to intervene earlier.  In our recent Consumer Banker Association (CBA) partner webinar, “Fraud or Financial Distress? How to Differentiate Fraud and Credit Risk Early,” Experian shared new data and analytics to help fraud, risk and collections leaders see this problem more clearly. This post summarizes key themes from the webinar and points you to the full report and on-demand webinar for deeper insight. Why first-party fraud is a growing issue for banks  Banks are seeing rising early losses, especially in digital channels. But those losses do not always behave like traditional credit deterioration. Several trends are contributing:  More accounts opened and funded digitally  Increased use of synthetic or manipulated identities  Economic pressure on consumers and small businesses  More sophisticated misuse of legitimate credentials  When these patterns are lumped into credit risk, banks can experience:  Inflation of credit loss estimates and reserves  Underinvestment in fraud controls and analytics  Blurred visibility into what is truly driving performance   Treating first-party fraud as a distinct problem is the first step toward solving it.  First-payment default: a clearer view of intent  Traditional credit models are designed to answer, “Can this customer pay?” and “How likely are they to roll into delinquency over time?” They are not designed to answer, “Did this customer ever intend to pay?” To help banks get closer to that question, Experian uses first-payment default (FPD) as a key indicator. At a high level, FPD focuses on accounts that become seriously delinquent early in their lifecycle and do not meaningfully recover.  The principle is straightforward:  A legitimate borrower under stress is more likely to miss payments later, with periods of cure and relapse.  A first-party fraudster is more likely to default quickly and never get back on track.  By focusing on FPD patterns, banks can start to separate cases that look like genuine financial distress from those that are more consistent with deceptive intent.  The full report explains how FPD is defined, how it varies by product, and how it can be used to sharpen bank fraud and credit strategies. Beyond FPD: building a richer fraud signal  FPD alone is not enough to classify first-party fraud. In practice, leading banks are layering FPD with behavioral, application and identity indicators to build a more reliable picture. At a conceptual level, these indicators can include:  Early delinquency and straight-roll behavior  Utilization and credit mix that do not align with stated profile  Unusual income, employment, or application characteristics High-risk channels, devices, or locations at application Patterns of disputes or behaviors that suggest abuse  The power comes from how these signals interact, not from any one data point. The report and webinar walk through how these indicators can be combined into fraud analytics and how they perform across key banking products.  Why it matters across fraud, credit and collections Getting first-party fraud right is not just about fraud loss. It impacts multiple parts of the bank. Fraud strategy Well-defined quantification of first-party fraud helps fraud leaders make the case for investments in identity verification, device intelligence, and other early lifecycle controls, especially in digital account opening and digital lending. Credit risk and capital planning When fraud and credit losses are blended, credit models and reserves can be distorted. Separating first-party fraud provides risk teams a cleaner view of true credit performance and supports better capital planning.  Collections and customer treatment Customers in genuine financial distress need different treatment paths than those who never intended to pay. Better segmentation supports more appropriate outreach, hardship programs, and collections strategies, while reserving firmer actions for abuse.  Executive and board reporting Leadership teams increasingly want to understand what portion of loss is being driven by fraud versus credit. Credible data improves discussions around risk appetite and return on capital.  What leading banks are doing differently  In our work with financial institutions, several common practices have emerged among banks that are getting ahead of first-party fraud: 1. Defining first-party fraud explicitly They establish clear definitions and tracking for first-party fraud across key products instead of leaving it buried in credit loss categories.  2. Embedding FPD segmentation into analytics They use FPD-based views in their monitoring and reporting, particularly in the first 6–12 months on book, to better understand early loss behavior.  3. Unifying fraud and credit decisioning Rather than separate strategies that may conflict, they adopt a more unified decisioning framework that considers both fraud and credit risk when approving accounts, setting limits and managing exposure.  4. Leveraging identity and device data They bring in noncredit data — identity risk, device intelligence, application behavior — to complement traditional credit information and strengthen models.  5. Benchmarking performance against peers They use external benchmarks for first-party fraud loss rates and incident sizes to calibrate their risk posture and investment decisions.  The post is meant as a high-level overview. The real value for your teams will be in the detailed benchmarks, charts and examples in the full report and the discussion in the webinar.  If your teams are asking whether rising early losses are driven by fraud or financial distress, this is the moment to look deeper at first-party fraud.  Download the report: “First-party fraud: The most common culprit”  Explore detailed benchmarks for first-party fraud across banking products, see how first-payment default and other indicators are defined and applied, and review examples you can bring into your own internal discussions.  Download the report Watch the on-demand CBA webinar: “Fraud or Financial Distress? How to Differentiate Fraud and Credit Risk Early”  Hear Experian experts walk through real bank scenarios, FPD analytics and practical steps for integrating first-party fraud intelligence into your fraud, credit, and collections strategies.  Watch the webinar First-party fraud is likely already embedded in your early credit losses. With the right analytics and definitions, banks can uncover the true drivers, reduce hidden fraud exposure, and better support customers facing genuine financial hardship.

by Brittany Ennis 2 min read February 12, 2026

Dormant fraud is an especially insidious form of account takeover fraud that often goes undetected until it’s too late. Learn how to protect your organization.

by Devon Smith 2 min read December 5, 2024

Fraud and identity theft in the automotive industry continue to make headlines with the result bringing significant monetary losses for dealers. In 2022, more than 60% of automotive dealerships filed cases of identity theft losing three or more vehicles, with 84% saying there has been a noticeable increase in identity fraud since the pandemic. Even though dealers understand that fraud is on the rise, 66% stated they lacked adequate identity fraud protections [1]. In a recent episode of the Used Car Dealer Podcast, host Zach Klempf, spoke with Kanchana Sundaram, Experian's senior director of product and innovation for automotive, to discuss Fraud Protect, a new tool from Experian that helps dealers combat fraud. During the interview, Kanchana highlighted how dealers can use Fraud Protect to better identify potentially fraudulent behavior, without slowing down the sales process and still maintaining a positive experience for both them and the consumer. By leveraging the latest technology and advanced analytics, dealers are able to detect some of the most common fraud types that include: Third-party fraud: Fraudsters steal an individual’s identity to purchase a vehicle First-party fraud: A person knowingly misrepresents their identity or provides false information, often with the intention of not paying for the vehicle Synthetic identity fraud: Fraudsters create fake identities and build credit profiles over time before using them to finance a vehicle they do not intend to pay for The episode is now available across all major podcast platforms, click the link to watch: YouTube To learn more about Fraud Protect, visit Experian’s auto fraud prevention solutions webpage. For more information on the Used Car Dealer Podcast, visit https://www.sellyautomotive.com/podcast Facebook – @SellyAutomotive ‘X’ – @SellyAutomotive LinkedIn – @SellyAutomotive 1. https://www.elendsolutions.com/research/2022-Identity-Fraud-Survey-Report/

by admin 2 min read February 28, 2024